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It does not seem to be possible to prove analytically that an incompressible, 
inviscid free shear layer is less unstable with respect to spatially growing three- 
dimensional disturbances than to two-dimensional ones. For this reason a 
numerical calculation for the special case of the hyperbolic tangent velocity 
profile was performed. It was found that even for spatially growing disturbances 
the amplification of three-dimensional disturbances is smaller than for two- 
dimensional ones. 

It was shown by Squire (1933) that three-dimensional disturbances in an in- 
compressible parallel flow are more stable than two-dimensional ones. The proof, 
however, was restricted to temporally growing disturbances. For inviscid free 
shear layers it was found by Michalke (1965) and Freymuth (1966) that the 
agreement between the results of stability theory and experiment is much better, 
if spatially growing disturbances were assumed in the theory. However, for this 
case, the Squire theorem is not applicable. Therefore the question whether three- 
dimensional disturbances are more stable or not cannot generally be answered. 
In  the following, this problem will be treated for the special case of the hyperbolic 
tangent velocity profile. 

For a three-dimensional disturbance the velocity component v normal to  the 
basic parallel flow U(y) has the form 

w(x, y, x ,  t )  = iol.$(y) ei(az+rs-pt). (1) 

The amplitude function $(y) has to satisfy the inviscid disturbance equation 

Considering a free shear layer the boundary conditions are given by 

$(a) = $(-a) = 0. (3) 

For physical reasons y has to be real and is the spanwise wave-number of the 
disturbance. 

Assuming temporally growing disturbances, a has to be real and is the wave- 
number in the basic flow direction x, while p = p,.+ipi is complex. /3, is the 
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disturbance frequency and /3+ the temporal growth rate. The eigenvalue problem 
posed by (2) and (3) then yields the complex eigenvalues /3 by a relation 

where the complex function f for a fixed basic velocity profile U(y) is universal, 
whether y is zero or not. Therefore the maximum of the temporal growth rate 
for y =k 0 cannot exceed the value for y = 0. 

PI. = f(J(a2 + r2)L (4) 
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for various spanwise wave-numbers y. 
FIGURE 1. Phase velocity and spatial growth rate of the tanh velocity profile 

Contrary to this, for spatially growing disturbances /3 has to be real and is the 
disturbance frequency, while a = a, + ia+ is complex. a, is the wave-number in 
basic flow direction x and - a$ is the spatial growth rate. Now the complex eigen- 
values a are given by a relation 

in which the influence of y is not as simple to discuss as that found in (4) for 
temporally growing disturbances. 

x = S(PYY), ( 5 )  

The complex eigenvalues a were computed for the basic velocity profile 

U(y) = 0.5[1+ tanhy], (6) 
using a method similar to that of Michalke (1965). The disturbance phase velocity 
c, = /3/ar and the spatial growth rate -a+ as a, function of the frequency p for 
various spanwise wave-numbers y are shown in figure 1. One can see that the 
spatial growth rate for fixed frequency is smaller for y + 0 than for y = 0. 
Therefore the three-dimensional disturbances are less unstable than two- 
dimensional disturbances. It is well known that for the neutral case we have 
af + y2 = 1 and /?/a, = 0.5, which yields the neutral frequency p = 0.52/(1 --y2). 
On the other hand, for P --f 0, PIa = c remains finite and unequal to zero. There- 
fore (2) reduces to 

+ [ g c i r 2 ] #  = 0. (7 )  
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The eigenvalues of (7) and (3) are then equivalent to those for two-dimensional 
temporally growing disturbances, if a is replaced by y. Therefore we find for the 
profile (6) that 

where c,(y) was calculated by Michalke (1964). Hence the phase velocity c, = /?/a, 
of three-dimensional disturbances for /? -+ 0 is given by 

c = 0 * 5 + i ~ , ( y ) ,  (8) 

c, = 2[$ + c%(y)] (9) 
and the spatial growth rate by 

It is assumed that these results obtained for the tanh profile are also significant 
for other profiles, and it is supposed that for any incompressible free shear layer 
the amplification of spatially growing, three-dimensional disturbances is smaller 
than that of two-dimensional disturbances. This seems to be confirmed by 
GropengieBer (1969), who treated the instability of a compressible free shear 
layer and found the same result, if the Mach number tends to zero. 
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